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Introduction: Traditional fMRI data analyses such as the general linear model (GLM) have been useful in 
capturing regional activation associated with behavioral responses, but fall short in characterizing brain network 
properties. Following recent research that has elucidated characteristic network topologies recurrent across 
diverse types of complex systems, we applied graph theory to model the human cerebral cortex as a functional 
network composed of nodes with functional connections or links. Cerebral hemodynamic (functional) data were 
taken from our previous study examining the effects of aging on speech perception in noise. We examined 
network parameters including degree (number of links possessed by a single node), clustering coefficient 
(fraction of actual versus potential links between neighbors of a node), and efficiency (relative speed of 
information transfer defined as the inverse of the harmonic mean of shortest path lengths), and tested the 
hypothesis that younger adults' capacity for more accurate speech perception in noise is associated with more 
robust network connectivity when compared to older adults.

Methods: Post-processing of MR imagine data consisted of motion and slice-timing correction, spatial 

smoothing, resampling to 6mm3 resolution and transformation to a common atlas of the brain. Voxel time series 
data of the cortical grey matter were then extracted and analyzed for network connectivity. Global network data 
such as degree distribution, average node degree, network clustering coefficient and efficiency were calculated 
as well as voxel-wise parameters including degree, clustering coefficient, and efficiency of each node. 
Normalized measures were obtained by comparing network measures to those in equivalent random networks. 
One-way ANOVAs were performed to examine group effects on network connectivity. The voxel-wise data were 
then projected onto anatomical scans to visualize changes in network topology across brain regions.

Results: Both young and elderly subjects possessed networks exhibiting small-world characteristics, and 
demonstrated exponentially-truncated power-law degree distributions (as networks became more sparse at 
higher thresholds, some networks displayed scale-invariant topologies). Younger subjects were found to possess 
significantly higher average node degrees as well as significantly shorter characteristic path lengths, despite 
higher overall brain activation in the elderly subjects in some regions of the brain. These differences were robust 
across all thresholds. Nodes of exceedingly high degree were found clustered near the prefrontal cortex, 
precuneus, insula and auditory cortex, partially overlapping with our previous analysis based on GLM. Group 
effects t-tests showed specific declines in relative degree connectivity (using z-score normalization for each 
network), clustering and efficiency in regions of the left superior temporal gyrus (STG), including primary auditory 
cortex. Decreases in these measures were also observed in left inferior temporal (IT) and parahippocampal 
(PHG) regions.

Conclusions: The significant increases in network efficiency in younger versus older adults is consistent with 
the observation of shorter average path lengths in this subject group, suggesting a more efficient network in the 
young cortex during speech perception in noise. These findings agree with behavioral results, which found 
younger subjects to be significantly more accurate at identifying speech in high levels of noise. Furthermore, 
these data-driven graph theoretical methods corroborate with traditional hypothesis-driven methods (the GLM in 
our case).
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Appendix II: Figures

Figure 1. Degree frequency plots for networks from an elderly subject, generated at three connection thresholds 
under loud noise (SNR –5) listening condition. Networks exhibited exponentially-truncated power-law degree 

distributions with F(k) ~ k-α e-k/kc. (a) rc = 0.6, α = 0.026, kc = 107; (b) rc = 0.7, α = 0.328, kc = 109; (c) rc = 0.8, 
α = 0.700, kc = 21. Note logarithmic axes.

Group Normalized cc Normalized L σ = Norm cc / Norm L

Young subjects 2.07 ± 0.306 1.34 ± 0.021 1.54 ± 0.217

Elderly subjects 1.73 ± 0.202 1.22 ± 0.034 1.40 ± 0.143

Table 1. Group averages for clustering (cc) and average path length (L) between nodes in young and elderly 
brain networks, demonstrating small-world characteristics. Normalized cc and L are computed by dividing the 
values in each network by the corresponding average value in 25 equivalent random networks. As the small 
world coefficient (σ) increases above unity, each network becomes more small world-like. Data shown for rc= 0.6 
under moderate noise (SNR 20) listening condition; error margins indicate standard error of the mean.

Figure 2. Group and listening condition effects on global network parameters. (a) Average node degree. Group: 
F(1,22) = 6.154, p = 0.021 (Young > Old); Condition: F(2,44) = 0.643, p = 0.531 ; Interaction: F(2,44) = 0.539, p 
= .587 (b) Clustering coefficient. Group: F(1,22) = 3.197, p = 0.088; Condition: F(2,44) = 1.725, p = 0.190 ; 
Interaction: F(2,44) = 0.427, p = 0.655 (c) Normalized efficiency. Group: F(1,22) = 6.538, p = 0.018 (Young > 
Old) ; Condition: F(2,44) = 0.694, p = 0.505 ; Interaction: F(2,44) = 1.338, p = .273. Statistics reported for mixed 
effects ANOVA with subject as random factor and condition as fixed within-subject factor. Error bars indicate 
standard error of the mean. P-values indicate results of 2-tailed, independent-sample t-tests for each condition; * 
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denotes significant difference (p < 0.05). Data shown for rc = 0.6.

Figure 3. Left Panel (above): Brain areas showing main effect of group on (a) degree z-score, (b) clustering 
coefficient, and (c) normalized efficiency based on independent-sample t-tests (p = 0.005, uncorrected) with 

minimum cluster size of 2 neighboring voxels (432 mm3). Colors represent average voxel-wise differences for 
each parameter (i.e. Elderly – Young; blue/red color indicate significantly higher values in young/elderly 
networks, respectively). Right panel (next page): List of corresponding brain regions showing cluster statistics. 
Data shown for rc = 0.6. 
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